Rapamycin-induced miR-21 promotes mitochondrial homeostasis and adaptation in mTORC1 activated cells

نویسندگان

  • Hilaire C. Lam
  • Heng-Jia Liu
  • Christian V. Baglini
  • Harilaos Filippakis
  • Nicola Alesi
  • Julie Nijmeh
  • Heng Du
  • Alicia Llorente Lope
  • Katherine A. Cottrill
  • Adam Handen
  • John M. Asara
  • David J. Kwiatkowski
  • Issam Ben-Sahra
  • William M. Oldham
  • Stephen Y. Chan
  • Elizabeth P. Henske
چکیده

mTORC1 hyperactivation drives the multi-organ hamartomatous disease tuberous sclerosis complex (TSC). Rapamycin inhibits mTORC1, inducing partial tumor responses; however, the tumors regrow following treatment cessation. We discovered that the oncogenic miRNA, miR-21, is increased in Tsc2-deficient cells and, surprisingly, further increased by rapamycin. To determine the impact of miR-21 in TSC, we inhibited miR-21 in vitro. miR-21 inhibition significantly repressed the tumorigenic potential of Tsc2-deficient cells and increased apoptosis sensitivity. Tsc2-deficient cells' clonogenic and anchorage independent growth were reduced by ∼50% (p<0.01) and ∼75% (p<0.0001), respectively, and combined rapamycin treatment decreased soft agar growth by ∼90% (p<0.0001). miR-21 inhibition also increased sensitivity to apoptosis. Through a network biology-driven integration of RNAseq data, we discovered that miR-21 promotes mitochondrial adaptation and homeostasis in Tsc2-deficient cells. miR-21 inhibition reduced mitochondrial polarization and function in Tsc2-deficient cells, with and without co-treatment with rapamycin. Importantly, miR-21 inhibition limited Tsc2-deficient tumor growth in vivo, reducing tumor size by approximately 3-fold (p<0.0001). When combined with rapamcyin, miR-21 inhibition showed even more striking efficacy, both during treatment and after treatment cessation, with a 4-fold increase in median survival following rapamycin cessation (p=0.0008). We conclude that miR-21 promotes mTORC1-driven tumorigenesis via a mechanism that involves the mitochondria, and that miR-21 is a potential therapeutic target for TSC-associated hamartomas and other mTORC1-driven tumors, with the potential for synergistic efficacy when combined with rapalogs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contractile activity-induced mitochondrial biogenesis and mTORC1.

In response to exercise training, or chronic contractile activity, mitochondrial content is known to be enriched within skeletal muscle. However, the molecular mechanisms that mediate this adaptation are incompletely defined. Recently, the protein complex, mammalian target of rapamycin complex 1 (mTORC1), has been identified to facilitate the expression of nuclear genes encoding mitochondrial p...

متن کامل

MicroRNA-21 is Induced by Rapamycin in a Model of Tuberous Sclerosis (TSC) and Lymphangioleiomyomatosis (LAM)

Lymphangioleiomyomatosis (LAM), a multisystem disease of women, is manifest by the proliferation of smooth muscle-like cells in the lung resulting in cystic lung destruction. Women with LAM can also develop renal angiomyolipomas. LAM is caused by mutations in the tuberous sclerosis complex genes (TSC1 or TSC2), resulting in hyperactive mammalian Target of Rapamycin (mTOR) signaling. The mTOR in...

متن کامل

microRNA-19a protects osteoblasts from dexamethasone via targeting TSC1

Activation of mTOR complex 1 (mTORC1) could protect human osteoblasts from dexamethasone. Tuberous sclerosis complex 1 (TSC1) is mTORC1 upstream inhibitory protein. We demonstrate here that microRNA-19a ("miR-19a", -3p) targets the 3' untranslated regions of TSC1 mRNA. Expression of miR-19a downregulated TSC1 in OB-6 osteoblastic cells and primary human osteoblasts. miR-19a activated mTORC1 and...

متن کامل

Rheb/mTORC1 signaling promotes kidney fibroblast activation and fibrosis.

Ras homolog enriched in brain (Rheb) is a small GTPase that regulates cell growth, differentiation, and survival by upregulating mammalian target of rapamycin complex 1 (mTORC1) signaling. The role of Rheb/mTORC1 signaling in the activation of kidney fibroblasts and the development of kidney fibrosis remains largely unknown. In this study, we found that Rheb/mTORC1 signaling was activated in in...

متن کامل

TGFβ-Stimulated MicroRNA-21 Utilizes PTEN to Orchestrate AKT/mTORC1 Signaling for Mesangial Cell Hypertrophy and Matrix Expansion

Transforming growth factor-β (TGFβ) promotes glomerular hypertrophy and matrix expansion, leading to glomerulosclerosis. MicroRNAs are well suited to promote fibrosis because they can repress gene expression, which negatively regulate the fibrotic process. Recent cellular and animal studies have revealed enhanced expression of microRNA, miR-21, in renal cells in response to TGFβ. Specific miR-2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017